Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MD02

(Specification 6360)

Decision 2

Final

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02 (cont))					1			
Q			Soluti	on		Marks	Total	Comments	
2(a)									
	3	1	0	4	1	M1		reducing columns first	
	1	4	1	2	4			_	
	1	0	3	1	2				
	2	3	2	0	0				
	0	5	1	2	1				
	3	1	0	4	1			then rows	
	0	k	0	1	3			k = 3 stated or value 3 in table	
	1	0	3	1	2				
	2	3	2	0	0				
	0	5	1	2	1	A1cso	2	AG	
	Times	41	1	1 2 2		D 1	1		
(D)(l)	Lines	through	columns	1, 2, 3 a	nd row 4	BI	1		
(ii)	3	1	0	3	0				
	0	3	0	0	2	M1		subtract 1 from all uncovered and add 1 to	
	1	0	3	0	1			all double covered (condone one slip)	
	3	4	3	0	0				
	0	5	1	1	0	A1	2	all correct ISW	
	This n	ow requi	res 5 line	es to cov	er zeros				
(c)	A2	<i>B3</i>	<i>C1</i>	D4	<i>E5</i>	B1		one of these correct	
	A5	<i>B3</i>	<i>C1</i>	D2	<i>E4</i>	B1		second way correct	
	A5	<i>B3</i>	<i>C</i> 2	D4	E1	B1	3	third way correct and no others	
(d)	Minim	num total	= 68 (m	ins)		B1	1		
(e)	Replac	ce each e	lement <i>x</i>	by $N-3$	r	E1	1	any value of N	
				-	Total		10		
						1	l		

Q	Solution	Marks	Total	Comments
3(a)	Row minima are $-4, -3, -7$	M1		both row minima and column maxima attempted (condone 2 errors)
	Column maxima are -3, 6, 8	A1		all values correct
	$\max (row \min) = \min (col \max) = -3$	E1		condone arrows pointing to this element but must state max (row min) and min (col max) or equivalent
	Play-safe Tom II and Jerry A	B1	4	

Q	Solution	Marks	Total	Comments
3(b)(i)	Let Rohan play R_1 with prob p			
	\Rightarrow plays R ₂ with prob $1 - p$			
	When Carla plays C_1 , Rohan's expected gain $= 3p + (1-p)$			
	$C_{2}:5p + (-2)(1-p) = 7p - 2$ $C_{3}:-p + 4(1-p) = 4 - 5p$	M1 A1		at least 2 expected gains correct unsimplified all 3 correct unsimplified
		M1 A1		at least 2 lines correct all lines correct for $0 \le p \le 1$ and values at 0 and 1 clear
	7p - 2 = 4 - 5p 12p = 6	M1		choosing highest point or using correct equation
	$\Rightarrow p = \frac{1}{2} \Rightarrow$ Rohan plays R ₁ 50% of the	A1cso		
	time and R_{2} 50% of the time			
(b)(ii)	Value of game $= 7 \times \frac{1}{2} - 2 = \frac{3}{2}$ AG When Rohan plays R ₁ , expected loss for	B1	7	or $4 - \frac{5}{2} = \frac{3}{2}$ must see working
	Carla is $3p + 5q + (-1)(1 - p - q)$ and when Rohan plays R_2 , expected loss for Carla is $p + (-2)q + 4(1 - p - q)$	M1		either expression correct unsimplified
	$4p + 6q = \frac{3}{2} + 1$ $3p + 6q = 4 - \frac{3}{2}$	A1		correct simultaneous equations unsimplified
	$\Rightarrow p = 0, q = \frac{5}{12}$ $\Rightarrow \text{ Carla never plays } C_1,$	A1		condone 0.42 or better
	plays C_2 with prob $\frac{5}{12}$			
	and plays C_3 with prob $\frac{1}{12}$	Elcso	4	Must have all 3 correct probabilities
	Total		15	

MD02 (cont))											
Q				Solı	ition				Marks	Total	Comments	
4(a)	5 <i>x</i> +	-3y +	10 <i>z</i> \$	≤15					M1		2 inequalities correct	
	7 <i>x</i> +	-6y+	$4z \leq$	28							or all 3 LHS & RHS correct but using <	
	4x +	-3y +	$6z \leq$	12					A1	2	all correct	
(b)(i)	Cho	osing	3 fro	om bot	tom re	ow as	s pivo	t	B1		identified or used	
	1	6	0	12 – k	x 0	0	2	24	M1		row operations (even with wrong pivot)	
	0	1	0	4	1	0	-1	3				
	0	-1	0	-8	0	1	-2	4	A1		one of rows 1, 2, 3 correct	
	0	$\frac{4}{3}$	1	2	0	0	$\frac{1}{3}$	4	A1	4	all correct (condone multiples of rows)	
(ii)	12-	<i>k</i> < 0)	$\Rightarrow k$	>12				M1 A1	2	their '12 – $k' < 0$ SC B1 for $k \ge 13$	
(c)(i)	1	6	0	-8	0	0	2	24				
	0	1	0	4*	1	0	-1	3	M1		correct pivot from <i>z</i> column 4*	
	0	-1	0	-8	0	1	-2	4			(identified or used)	
	0	$\frac{4}{3}$	1	2	0	0	$\frac{1}{3}$	4				
	1	8	0	0	2	0	0	30	A1		one of rows 1, 3 or 4 correct	
	0	$\frac{1}{4}$	0	1	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{3}{4}$	A 1		another of rough 2 or 4 correct	
	0	1	0	0	2	1	-4	10	AI		another of rows 1, 5 of 4 correct	
	0	$\frac{5}{6}$	1	0	$-\frac{1}{2}$	0	$\frac{5}{6}$	$\frac{5}{2}$	A1	4	all correct (condone multiples of rows)	
(ii)	Max	imun	n valı	ue of F	n ow	reacl	hed		E1		their tableau must have no negatives in top row	
	$P = 30, x = 0, y = \frac{5}{2}, z = \frac{3}{4}$					B1√		ft their values from their tableau provided at least 2 marks earned in (c)(i)				
	<i>s</i> = 0	t = 0, t = 0	:10,	u = 0					B1cao	3	condone up to 2 slips in their final tableau	
							I	Total		15		

MD02 (cont)

Q	Solution	Marks	Total	Comments
5(a)	Cut value $= 40 + 27 + 0 + 24$			
	=91	B1	1	
(b)	ABDX 16	B1		
	GFBX 18	B1		
	GHEX 20	B1	3	
(c)(i)	One correct route with additional flow	M1		any feasible route and flow
	Another 2 routes and flows correct	A1		total flow at least 80
	All routes correct with total flow $= 85$	A1cso		
	Forward and backward flows on diagram (directions must be clear)	M1		at least 8 edges with pairs of values 'correct'
	Augmenting flows	A1cso	5	correct
	Consider other possible correct flows	A	$\frac{0}{6}$ B	$\begin{array}{c c} \hline & & \\ \hline \\ \hline$
	Condone diagram as shown but really	0 8 8	1	01 20 GFBX 18
	should have initial flows in DE, etc		715 at 14	$\frac{16}{12}$ $\frac{13}{38}$ $\frac{16}{27}$ GHEX 20
		c	01 115	$0 \qquad D \qquad = E \qquad GCBX \qquad 7$
			E -	ACBX 8
		0117 0	×. /	GHFDX 11
			1819	GHEDBX 4
			1681	GFDBX 1
		G	20 31	Н
				5
(ii)	Max flow $= 85$	B1		
	Correct may flow	D 1	2	
	Correct max now	DI	Z	A 16 B 38 X
	Consider other possible correct flows			
	1 0			8 15 11 27
				12
				19 11 24
				G 35 H
(L)	Considering 'their' AD CD ED 45	MI		
(a)	Considering their $AB+CB+FB = 43$ = A fewer	111		
	$\Rightarrow \max \text{ number} = 81$	A1cao	2	
	Total		13	

Q	Solution		Marks	Total	Comments		
6	Wednesday profits		M1		4 more calcul	ations/ profits co	orrect
			A1		6 more profits	s correct	
			Δ1		all profite cor	rect	
	Tuesday: use of maxima fro	m Wadnaaday	M1		6 more coloul	ationa/profita cor	root
	Tuesday: use of maxima fro	in wednesday			o more calcul	ations/proms cor	rect
			AI		8 profits corre	ect	
			A1		all profits cor	rect	
					ft one slip from	m Wednesday fig	gures
	Monday values correct		A1√		all profits cor	rect	
					ft one slin fro	m Tuesday figure	NC .
						in Tuesday ingait	
	(Manday builds shad) D		M1		Chaosing lan	and Monday me	Fit from
	(wonday builds shed) D		IVI I		Choosing lar	gest Monday pro	III IIOIII
					their table		
	\Rightarrow orde	r <i>D B A C</i>	Alcso	9			
					SC B1 only f	for order D B A C	1
					NMS or with	out "correct" tab	le
			1 1		1		
	Staga	State	Act	ion I	Calculation	Profit in	1
	(Dav)	(Sheds already	(shed to	build)	Carculation	pounds	
	(,)	built)		~ /]
	Thursday	A, B, C	L			90	
		A, B, D	0			87	{
		A, C, D	B			76	
		D, C, D	A			70	1
	Wednesday	A, B	0		84 + 90	174	
		· · · · · · · · · · · · · · · · · · ·	L)	88 + 87	175 →	
		A, C	В		71 + 90	$161 \rightarrow$	
			L)	82 + 76	158	
		A, D	B		74 + 87	$161 \rightarrow 150$	
		B C	4		$\frac{83 \pm 70}{65 \pm 90}$	155	
		Б, С)	$\frac{86+70}{86+70}$	$155 \rightarrow$	•
		<i>B</i> , <i>D</i>	A		69 + 87	$156 \rightarrow$	
			0		85 + 70	155	
		С, D	A		66 + 76	142	
			В	2	73 + 70	$143 \rightarrow$	
	Tuesday	Δ	B		72 + 175	247	
	Tucsuay	11	6		83 + 161	244	1
			L)	84 + 161	245	1
		В	A		60 + 175	235]
			0		80 + 156	236	
		<i>C</i>		,	83 + 156	$239 \rightarrow 218$	{
		C	A		$\frac{57 + 161}{68 + 156}$	218	4
)	85 + 143	224 $228 \rightarrow$	1
		D	A		62 + 161	223	1
			В		70 + 156	$226 \rightarrow$]
			0		81 + 143	224	
					50 : 247	207	1
	Monday	-	A		$\frac{50 + 247}{65 + 239}$	304	1
			В С		70 + 228	298	1
)	80 + 226	306 →]
	Schedule		-	1. 1	***		7
	Shed to build	Tues	day	Wednesday	Thursday	4	
	Sheu to build	D		,	Λ		J
		Tatal		Q			
				75			
		IUIAL		13	l		

MD02 (cont)